Cellphone Forensics: A Discussion on the Means of iPhone Data Extraction


SalvationDATA Blog

In the former issues of Technical Insights, data recovery experts from the Key Laboratory of Sichuan Province(Subsidiary of SalvationDATA) explained their researches on extraction of cellphone audio files, the recovery of SQLite database files, the writing of forensic scripts for cellphone apps, and the mining of data through defensive cellphone apps etc. The focus of this issue is the various means of data extraction from iPhones (either jail-broken or not) that can give access to all types of data, including texts, images, audios and videos.

With the continuous development of mobile communication technology, cellphones has become an indispensable tool for interpersonal communication and almost everyone carries one or more cellphones. A great deal of information recorded by cellphone apps, chats and locations for example, would probably become the key for investigators to crack cases. Cellphone data extraction, therefore, bares great importance.

To provide support for data extraction from Android…

View original post 669 more words

Những cỗ máy hacker


Thượng tuần tháng 8, nhiều sự kiện an ninh mạng quy mô toàn cầu diễn ra gần như cùng lúc tại Mỹ, cảnh báo được đưa ra: trong chiến tranh mạng, sẽ đến ngày hacker máy móc thay thế các hacker là con người, độ nguy hiểm nâng lên gấp bội.

 

Những cỗ máy hacker
khi cỗ máy biết hack sẽ nguy hiểm cỡ nào?

 

5.000 người ngồi chật kín căn phòng hội nghị tại khu nghỉ dưỡng Paris Las Vegas tối 4-8, hướng mắt về sân khấu, nơi bảy cỗ máy sừng sững cao hàng mét xếp hàng ngang, được chiếu sáng với ánh đèn màu khác nhau.

Chúng đại diện cho bảy đội sắp sửa bước vào cuộc đấu lớn: tìm lỗ hổng bảo mật để xâm nhập hệ thống đối phương. Các bình luận viên đứng quanh ba màn hình lớn thuyết minh về trận đấu – thực chất là vô hình – bởi chúng diễn ra trên không gian mạng và không có hacker nào điều khiển các cỗ máy khổng lồ kia cả – tất cả tự vận hành nhờ vào trí thông minh nhân tạo (AI).

Cảnh tượng trên là trailer của một phim khoa học viễn tưởng mới? Không, đó là những gì đã thực sự diễn ra trong đêm chung kết cuộc thi Cyber Grand Challenge do Defense Advanced Research Project Agency (DARPA), cơ quan chuyên nghiên cứu các công nghệ quốc phòng tối tân thuộc Bộ Quốc phòng Hoa Kỳ, tổ chức.

Bảy siêu máy tính trên được gọi là những “cỗ máy biết hack”, do lẽ chúng được tạo ra để thay thế các chuyên gia bảo mật. Trận chung kết Cyber Grand Challenge được tổ chức dưới hình thức cướp cờ, một kiểu thi đấu phổ biến trong giới bảo mật: nhiệm vụ của mỗi đội là tìm lỗ hổng trong hệ thống của đối phương để tấn công, và đảm bảo chính hệ thống của mình cũng không có lỗi để đối thủ có thể khai thác.

Những cuộc thi cướp cờ ảo như vậy không hiếm, nhưng đây là lần đầu tiên các “thí sinh” vào cuộc hoàn toàn tự động mà không cần con người can thiệp. Sau cùng, cỗ máy do Công ty khởi nghiệp ForAllSecure phát triển có tên Mayhem (Hỗn loạn) giành giải nhất trị giá 2 triệu USD.

 

Những cỗ máy hacker
Hacker có tạo nên những cuộc chiến tranh mạng hay không chưa biết, nhưng thiệt hại từ những vụ xâm nhập vừa qua là vô cùng lớn

 

Hacker robot giúp 
thế giới an toàn…

Trong báo cáo mới nhất, Công ty bảo mật Symantec ước tính có khoảng 5.500 lỗ hổng bảo mật mới được phát hiện trên toàn cầu chỉ riêng trong năm 2015. Giới công nghệ cho rằng sẽ không đủ nhân lực để chống lại các cuộc tấn công mạng ngày càng gia tăng hiện nay.

Hơn nữa, như DARPA cảnh báo, “các chuyên gia an ninh mạng sẽ phải mất cả năm trời kể từ khi phát hiện ra lỗ hổng bảo mật mới tìm được giải pháp xử lý”, và khoảng thời gian này đủ để các hệ thống tối quan trọng bị xâm nhập.

Những cỗ máy biết tự tìm và vá lỗi bảo mật, vì thế, được kỳ vọng sẽ giúp ích rất nhiều trong các cuộc chiến tranh mạng mà kẻ xấu – tức người tấn công – vẫn thường có lợi thế hơn người phòng thủ.

“Việc tìm một lỗ hổng duy nhất và khai thác nó dễ hơn rất nhiều so với phải bảo vệ tất cả các điểm yếu trong một hệ thống” – David Brumley, CEO của ForAllSecure, giải thích.

Trên thực tế, các hệ thống hiện được lập trình để phát hiện ra các cuộc xâm nhập, nhưng chỉ có thể báo động. Năm 2013, tin tặc xâm nhập hệ thống của chuỗi siêu thị Target (Mỹ) và đánh cắp thông tin thẻ tín dụng của 40 triệu khách hàng.

Phần mềm bảo mật của Target đã cảnh báo với bộ phận IT của hãng này ngay khi phát hiện, song “cảnh báo rất quan trọng này lại chìm nghỉm trong hàng đống các cảnh báo bảo mật khác vốn vẫn được gửi mỗi ngày” – theo Bloomberg.

Khi được hoàn thiện, những cỗ máy biết hack như Mayhem chắc chắn sẽ giải quyết nốt những vướng mắc kể trên.

 

Những cỗ máy hacker
Biến nạn nhân thành máy ATM rút tiền

 

…cỗ máy mà tạo phản 
thì sao?

Dù hồ hởi với “những cỗ máy biết hack”, giới công nghệ vẫn có lý do để âu lo. Chuyện gì sẽ xảy ra nếu máy tính sau khi tìm ra các lỗ hổng bảo mật, không vá lại mà lại khai thác các lỗi này để thực hiện một cuộc tấn công? “Khi đó ta không phải có các siêu máy tính bảo vệ ta khỏi hacker, mà chúng chính là hacker” – trang CNET cảnh báo.

Ngày 14-7, khi DARPA chỉ mới loan tin về cuộc thi Cyber Grand Challenge, thiên tài công nghệ Elon Musk đã lên tiếng cảnh báo về viễn cảnh đáng sợ đó.

“Mọi thứ sẽ rất vui và chỉ là một cuộc chơi cho đến khi…” – Musk viết trên Twitter, kèm theo đường link đến bài viết về Skynet trên Wikipedia sau ba dấu chấm lửng.

Nhiều trang tin công nghệ cho rằng chưa rõ Musk đùa hay thật khi ngụ ý những cỗ máy biết hack rồi sẽ tạo nên Skynet – sản phẩm trong loạt phim viễn tưởng Terminator, chi phối toàn bộ hệ thống máy tính và robot với mục tiêu hủy diệt nhân loại. Nhưng ông từng gọi AI là “hiểm họa lớn nhất cho sự tồn vong của nhân loại”.

Nhưng trước mắt, Brumley cho rằng các cỗ máy biết hack như Mayhem của ông không phải là điều tồi tệ. “Như bất kỳ công cụ nào, bạn cần phải dùng chúng một cách có đạo đức – ông nói – Chúng tôi tin rằng công nghệ của mình sẽ giúp máy tính trên thế giới an toàn và bảo 
mật hơn”.

 

Chiến tranh mạng không như ta tưởng?

 

Trong bối cảnh ai cũng có thể là nạn nhân của tin tặc, cẩn trọng và tự bảo vệ mình hơn bao giờ hết là chìa khóa. Một báo cáo công bố tại Black Hat chỉ ra người ta có xu hướng click vào các link không rõ nguồn gốc gửi qua mạng xã hội cao hơn gấp đôi so với trên email. Một nhóm nghiên cứu của Google cũng từng thử nghiệm giả vờ làm rơi 300 USB trong khuôn viên Đại học Illinois Urbana – Champaign để xem bao nhiêu người sẵn sàng cắm USB lạ nhặt được ngoài đường vào máy. Kết quả có đến 98% số USB được nhặt, và một nửa số người mang chúng về nhà cắm thẳng vào máy và thậm chí mở luôn các file trong đó dù không rõ nó là gì.

Neal Pollard, nhà nghiên cứu thuộc chương trình Cyber Statecraft Initiative của Tổ chức Think Tank Atlantic Council, cho rằng “Chiến tranh mạng đang thực sự diễn ra không như ta tưởng”.

Trong bài viết với tiêu đề như thế trên trang mạng Politico ngày 6-8, Pollard cho rằng nước Mỹ sẽ không phải chịu một “trận Trân Châu Cảng trên mạng” do bọn khủng bố hay các quốc gia thù địch gây ra như cựu bộ trưởng quốc phòng Mỹ Leon Panetta từng tiên đoán năm 2012.

Pollard cho rằng chưa có cuộc chiến tranh mạng nào diễn ra mà kẻ tấn công nhằm vào mạng lưới điện quốc gia hay phá hoại các công trình trọng yếu như nhà máy, sân bay… Trái lại, các cuộc tấn công trên không gian mạng đang được nhằm vào mục đích khác như “gây ảnh hưởng chính trị hay thậm chí đe dọa”.

Để chứng minh, Pollard dẫn vụ bê bối rò rỉ email của WikiLeaks trong Đại hội toàn quốc Đảng Dân chủ Mỹ hồi tháng 7, vụ tấn công Hãng phim Sony Pictures Entertainment năm 2014, và cách các tổ chức khủng bố dùng mạng xã hội để công bố các video cảnh chặt đầu.

Chuyên gia này lý giải vụ rò rỉ email được cho là do Nga gây ra nhằm tác động lên cuộc bầu cử ở Mỹ, vụ Sony là đòn đáp trả của Triều Tiên về bộ phim The Interview, và các tổ chức khủng bố dùng mạng chủ yếu để tuyển mộ thành viên, tuyên truyền và gieo rắc sợ hãi. “Các quốc gia sẽ vẫn tận dụng không gian mạng cho các hoạt động tình báo để đeo đuổi kết quả chiến lược như thế, nhưng không bao giờ là một chiến dịch quân sự công khai” – ông kết luận.

Trong khi đó, theo The Economist, một nguồn tài nguyên quý giá trên không gian ảo mà kẻ xấu luôn nhằm vào chính là lòng tin. Tin tặc có thể không cần mất công xâm nhập hệ thống ngân hàng để cuỗm tiền, mà chỉ cần phá vỡ lòng tin giữa ngân hàng và khách hàng, can thiệp và phá hỏng cơ sở dữ liệu, là đủ phá sập thị trường tài chính. “Khi khách hàng không còn tin vào nhà băng nữa, họ sẽ rút tiền và tháo chạy” – The Economist viết. Tất cả những hệ lụy này cũng khủng khiếp không kém viễn cảnh chiến tranh mạng có vũ lực như trong phim.

Những thách thức bảo mật mới

Đêm chung kết cuộc đấu của những cỗ máy biết hack cũng là lúc hội nghị Black Hat USA 2016 bế mạc sau sáu ngày diễn ra ở Las Vegas. Cùng thời điểm đó, chuỗi hội nghị của giới hacker DEF CON cũng khai mạc tại thành phố này. Cả hai sự kiện thường niên về bảo mật và an ninh mạng này đều giới thiệu nhiều xu hướng, công nghệ tấn công mới mà nếu bị kẻ xấu lợi dụng sẽ gây ra nhiều thảm họa về an toàn thông tin.

Tại Black Hat USA, Công ty ZeroFox giới thiệu SNAP_R, một chatbot (phần mềm biết giao tiếp với con người) được cho là “vũ khí mới” của giới phishing (lừa nạn nhân click vào đường link có chứa mã độc để đánh cắp thông tin) chuyên nhằm vào nạn nhân trên Twitter. SNAP_R nghiền ngẫm tất cả những gì nạn nhân chia sẻ trên Twitter để học thói quen, hành vi của họ.

Thông tin này giúp chatbot dễ chiếm được lòng tin của nạn nhân, khiến họ click vào đường link bẩn (thường ở dạng rút gọn kiểu bit.ly) và “dính đòn”. ZeroFox khẳng định tỉ lệ lừa thành công lên đến 60%.

Theo thông tin tại DEF CON, giới tội phạm mạng đã thay đổi chiến lược sang hình thức cài mã độc đòi tiền chuộc (ransomware) và xem nạn nhân “như máy ATM”, chỉ có thể nhả tiền ra chứ không làm được gì khác. Tại DEF CON, một ransomware được giới thiệu có thể xâm nhập vào bộ điều chỉnh nhiệt tự động tại các căn hộ thông minh. “Hãy tưởng tượng bạn vội về nhà để thoát cái nóng 38 độ ngoài trời, và rồi bộ điều chỉnh nhiệt lại bắt bạn phải trả 100 USD, nếu không nó vẫn cứ giữ nhiệt độ phòng ở mức 37oC” – Hãng McAfee ví dụ để mô tả sự đáng sợ của phần mềm độc hại này.

 

 

TRƯỜNG SƠNTuoiTre Online

Dự án No More Ransom: 14 ngôn ngữ, 39 công cụ giải mã


Sau 9 tháng chính thức ra mắt, dự án No More Ransom đã thu hút sự tham gia của nhiều cơ quan hành pháp và các đối tác tư nhân, qua đó giúp nhiều nạn nhân của ransomware lấy lại dữ liệu mà không phải trả tiền chuộc cho hacker.

Được biết, dự án No More Ransom ra mắt hồi tháng 7/2016 bởi cảnh sát Hà Lan, Europol, Intel Security và Kaspersky Lab, đánh dấu mối hợp tác mới giữa các cơ quan hành pháp và khối tư nhân để cùng chống lại sự bùng nổ của mã độc tống tiền (ransomware).

Đại diện Kaspersky cho biết, nền tảng http://www.nomoreransom.org hiện đã hỗ trợ 14 ngôn ngữ và cung cấp tổng cộng 39 công cụ giải mã miễn phí.

Kể từ báo cáo hồi tháng 12/2016 của Kaspersky, hơn 10 000 nạn nhân từ khắp nơi trên thế giới đã có thể giải mã các thiết bị bị ảnh hưởng của họ nhờ các công cụ được cung cấp miễn phí trên nền tảng này.

So với phiên bản trước đó, đã có 14 công cụ (giải mã ransomware) được bổ sung vào nền tảng No More Ransom.

Ngoài ra, cũng theo thông tin từ Kaspersky, dự án No More Ransom đã ghi nhận sự tham gia của nhiều đối tác mới như AVAST, CERT Polska và Eleven Paths – bộ phận an ninh mạng của Telefonica với tư cách là đối tác liên kết. Tính đến thời điểm hiện tại, đối tác liên kết của No More Ransom là 7 thành viên. Trong khi đó, số đối tác hỗ trợ tham gia chương trình hiện có thêm 30 thành viên mới, nâng tổng số thành viên lên mức 70.

Trong buổi gặp gỡ báo giới hồi cuối tháng 4/2017, đại diện Kasperky tại Việt Nam và công ty Nam Trường Sơn cũng cho biết, Kaspersky Lab vừa công bố phiên bản mới của Kaspersky Anti-Target Attack Platform, một giải pháp để phát hiện các mối đe dọa cấp cao và các cuộc tấn công mục tiêu cho các doanh nghiệp.

Giải pháp này kết hợp các thuật toán machine learning tiên tiến, thông tin tình báo về các mối đe dọa và khả năng thích ứng với cơ sở hạ tầng của khách hàng để giúp các doanh nghiệp lớn phát hiện ra các cuộc tấn công tinh vi và phá hoại ở bất kỳ giai đoạn phát triển nào.

 

Lâm Đức Thắng – PCworldVN

The consequences of the Trump presidency on cybersecurity


AIVAnet

Hacking and cybersecurity played a huge role in the presidential election. So much so that Donald Trump, America?s new president-elect, was helped greatly by the acts of criminal hackers in his journey to the White House, and is now an outspoken WikiLeaks fan.

Though, unless he appoints Julian Assange as his Cybersecurity Czar, I doubt we?ll be seeing WikiLeaks coming to Trump?s rescue when he needs help with cyber-policy in the near future. But you never know.

And that?s where this insane ride, where any consideration of the human beings who will experience the consequences of their combined machinations is absent, is going: Mr. Trump is now going to be in control of America?s cybersecurity and cyber-warfare policies and plans. He has promised that what he called ?the cyber? in his last debate will immediately become a priority, citing threats in the form of China and North Korea.

Mr. Trump…

View original post 1,664 more words

Common Terms to Know if you want to become a Hacker


KHAN ITs

Hacking

hacking1#DDoS: DDoS  means Distributed Denial of Service. This is a type of DOS attack in which multiple compromised systems are used and these systems are often infected with a Trojan. All these infected systems select a target and cause a Denial of Service (DoS) attack.

2# VPS: It stands for Virtual private server (VPS) . It is a virtual machine that is sold as a service by an Internet hosting service. A VPS generally runs its own copy of an operating system, and the customers have superuser-level access to that operating system instance, so they can install almost any software that runs on that OS.

3# SE: Social engineering is an attack vector that relies heavily on human interaction and often involves tricking people into breaking normal security procedures.

4# HTTP: The Hypertext Transfer Protocol (HTTP) is an application protocol for  collaborative, distributed, hypermedia information systems. HTTP is the…

View original post 1,177 more words

Change Prompt in Bash


Learning in the Open

Background

For us that like to journal and keep notes of every command we issue and capture screens, having long prompts get in the way a bit.

Especially, when you get an incident and pick up that phone and  it says one of the DB/2 hosts is running out of Log space again.

And, the best you can do is say that if it is only at 90% it can likely suffer till the morning.

Current Prompt

To get the current prompt issue “echo $PS1

Image

Text

u@h:w>

Revised Prompt

Let us rid ourselves of all the clutter by dropping all three; username, machine name and the current working directory are all out of here.

SESSION

Permanently

To make the change permanently, please edit ~/profile in your editor of choice and add same line.

View original post

How to build and run a Security Operations Center


 

Today’s cybersecurity operations center (CSOC) should have everything it needs to mount a competent defense of the ever-changing information technology (IT) enterprise.

This includes a vast array of sophisticated detection and prevention technologies, a virtual sea of cyber intelligence reporting, and access to a rapidly expanding workforce of talented IT professionals. Yet, most CSOCs continue to fall short in keeping the adversary—even the unsophisticated one—out of the enterprise.

Ensuring the confidentiality, integrity, and availability of the modern information technology (IT) enterprise is a big job.

It incorporates many tasks, from robust systems engineering and configuration management (CM) to effective cybersecurity or information assurance (IA) policy and comprehensive workforce training.

It must also include cybersecurity operations, where a group of people are charged with monitoring and defending the enterprise against all measures of cyber attack.

What Is a SOC?

A SOC is a team primarily composed of security analysts organized to detect, analyze, respond to, report on, and prevent cybersecurity incidents.

The practice of defense against unauthorized activity within computer networks, including monitoring, detection, analysis (such as trend and pattern analysis), and response and restoration activities.

There are many terms that have been used to reference a team of cybersecurity experts assembled to perform CND.

They include: ‚

  • Computer Security Incident Response Team (CSIRT) ‚
  • Computer Incident Response Team (CIRT) ‚
  • Computer Incident Response Center (or Capability) (CIRC) ‚
  • Computer Security Incident Response Center (or Capability) (CSIRC) ‚
  • Security Operations Center (SOC) ‚
  • Cybersecurity Operations Center (CSOC)
  • ‚ Computer Emergency Response Team(CERT)

In order for an organization to be considered a SOC, it must:

  • 1. Provide a means for constituents to report suspected cybersecurity incidents
  • 2. Provide incident handling assistance to constituents
  • 3. Disseminate incident-related information to constituents and external parties.

Mission and Operations Tempo

SOCs can range from small, five-person operations to large, national coordination centers. A typical midsize SOC’s mission statement typically includes the following elements:

1. Prevention of cybersecurity incidents through proactive:

  • a. Continuous threat analysis
  • b. Network and host scanning for vulnerabilities
  • c. Countermeasure deployment coordination
  • d. Security policy and architecture consulting.

2. Monitoring, detection, and analysis of potential intrusions in real time and through historical trending on security-relevant data sources

3. Response to confirmed incidents, by coordinating resources and directing use of timely and appropriate countermeasures

4. Providing situational awareness and reporting on cybersecurity status, incidents, and trends in adversary behavior to appropriate organizations

5. Engineering and operating CND technologies such as IDSes and data collection/ analysis systems.

Of these responsibilities, perhaps the most time-consuming is the consumption and analysis of copious amounts of security-relevant data. Among the many security-relevant data feeds a SOC is likely to ingest, the most prominent are often IDSes.

IDS’es are systems placed on either the host or the network to detect potentially malicious or unwanted activity that warrants further attention by the SOC analyst. Combined with security audit logs and other data feeds, a typical SOC will collect, analyze, and store tens or hundreds of millions of security events every day.

According to  an event is “Any observable occurrence in a system and/or network. Events sometimes provide indication that an incident is occurring” (e.g., an alert generated by an IDS or a security audit service). An event is nothing more than raw data.

It takes human analysis—the process of evaluating the meaning of a collection of security-relevant Fundamentals Ten Strategies of a World-Class Cybersecurity Operations Center 11 data, typically with the assistance of specialized tools—to establish whether further action is warranted.

Tier Level:

  1. Tier 1
  2. Tier 2
  3. Tier 3
  4. Soc Manager

Tier 1: Alert Analyst

Duties

Continuously monitors the alert queue; triages security alerts; monitors health of security sensors and endpoints; collects data and context necessary to initiate Tier 2 work.

Required Training

Alert triage procedures; intrusion detection; network, security information and event management (SIEM) and hostbased investigative training; and other tool-specific training. Certifications could include SANS SEC401: Security Essentials Bootcamp Style.

 

Tier 2: Incident Responder

Duties

Performs deep-dive incident analysis by correlating data from various sources; determines if a critical system or data set has been impacted; advises on remediation; provides support for new analytic methods for detecting threats.

Required Training

Advanced network forensics, host-based forensics, incident response procedures, log reviews, basic malware assessment, network forensics and threat intelligence. Certifications could include SANS SEC501: Advanced Security Essentials – Enterprise Defender; SANS SEC503: Intrusion Detection In-Depth; SANS SEC504: Hacker Tools, Techniques, Exploits and Incident Handling.

Tier 3 Subject Matter Expert/ Hunter

Duties

Possesses in-depth knowledge on network, endpoint, threat intelligence, forensics and malware reverse engineering, as well as the functioning of specific applications or underlying IT infrastructure; acts as an incident “hunter,” not waiting for escalated incidents; closely involved in developing, tuning and implementing threat detection analytics.

Required Training

Advanced training on anomalydetection; tool-specific training for data aggregation and analysis and threat intelligence. Certifications could include SANS SEC503: Intrusion Detection In-Depth; SANS SEC504: Hacker Tools, Techniques, Exploits and Incident Handling; SANS SEC561: Intense Hands-on Pen Testing Skill Development; SANS FOR610: Reverse-Engineering Malware: Malware Analysis Tools and Techniques.

SOC Manager

Duties

Manages resources to include personnel, budget, shift scheduling and technology strategy to meet SLAs; communicates with management; serves as organizational point person for business-critical incidents; provides overall direction for the SOC and input to the overall security strategy

Required Training

Project management, incident response management training, general people management skills. Certifications include CISSP, CISA, CISM or CGEIT.

 

The SOC typically will leverage internal and external resources in response to and recovery from the incident. It is important to recognize that a SOC may not always deploy countermeasures at the first sign of an intrusion. There are three reasons for this:

  • 1. The SOC wants to be sure that it is not blocking benign activity.
  • 2. A response action could impact a constituency’s mission services more than the incident itself.
  • 3. Understanding the extent and severity of the intrusion by watching the adversary is sometimes more effective than performing static forensic analysis on compromised systems, once the adversary is no longer present.

To determine the nature of the attack, the SOC often must perform advanced forensic analysis on artifacts such as hard drive images or full-session packet capture (PCAP), or malware reverse engineering on malware samples collected in support of an incident. Sometimes, forensic evidence must be collected and analyzed in a legally sound manner. In such cases, the SOC must observe greater rigor and repeatability in its procedures than would otherwise be necessary.

Building a Security Operations Center

In addition to SOC analysts, a security operations center requires a ringmaster for its many moving parts.

The SOC manager often fights fires, within and outside of the SOC. The SOC manager is responsible for prioritizing work and organizing resources with the ultimate goal of detecting, investigating and mitigating incidents that could impact the business.

The SOC manager should develop a workflow model and implement standardized operating procedures (SOPs) for the incident-handling process that guides analysts through triage and response procedures.

Processes

Defining repeatable incident triage and investigation processes standardizes the actions a SOC analyst takes and ensures no important tasks fall through the cracks.

By creating repeatable incident management workflow, team members’ responsibilities and actions from the creation of an alert and initial Tier 1 evaluation to escalation to Tier 2 or Tier 3 personnel are defined.

Based on the workflow, resources can be effectively allocated.

One of the most frequently used incident response process models is the DOE/CIAC model, which consists of six stages: preparation, identification, containment, eradication, recovery and lessons learned.

Technology

An enterprisewide data collection, aggregation, detection, analytic and management solution is the core technology of a successful SOC.

An effective security monitoring system incorporates data gathered from the continuous monitoring of endpoints (PCs, laptops, mobile devices and servers) as well as networks and log and event sources.

With the benefit of network, log and endpoint data gathered prior to and during the incident, SOC analysts can immediately pivot from using the security monitoring system as a detective tool to using it as an investigative tool, reviewing suspicious activities that make up the present incident, and even as a tool to manage the response to an incident or breach.

Compatibility of technologies is imperative, and data silos are bad—particularly if an organization has an existing security monitoring solution (SIEM, endpoint, network or other) and wants to incorporate that tool’s reporting into the incident management solution.

Adding Context to Security Incidents

The incorporation of threat intelligence, asset, identity and other context information is another way that an effective enterprise security monitoring solution can aid the SOC analyst’s investigative process.

Often, an alert is associated with network or host-based activity and, initially, may contain only the suspicious endpoint’s IP address. In order for Network Flows Network Traffic Security Events Identity/ Asset Context Endpoint Data System Logs Threat Intel Feeds SECURITY MONITORING SYSTEM.

Compatible Technologies Aid Detection Data Aggregation for Improved Incident Handling Visibility. By centralizing these various sources of data into a security monitoring system, the SOC gains actionable insight into possible anomalies indicative of threat activity. Action. Based on findings, automated and manual interventions can be made to include patching, firewall modification, system quarantine or reimage, and credential revocation. Analysis.

Security operations analysts can analyze data from various sources and further interrogate and triage devices of interest to scope an incident.

A Roadmap the SOC analyst to investigate the system in question, the analyst generally needs other information, such as the owner and hostname of the machine or DHCP-sourced records for mapping IP and host information at the time of the alert.

If the security monitoring system incorporates asset and identity information, it provides a huge advantage in time and analyst effort, not to mention key factors the analyst can use to prioritize the security incident—generally speaking, higher-value business assets should be prioritized over lower-value assets.

Defining Normal Through Baselining

The ability to create a baseline of activity for users, applications, infrastructure, network and other systems, establishing what normal looks like, is one advantage of aggregated data collected from various enterprise sources.

Armed with the definition of “normal,” detecting suspicious behavior—activities that are in some way outside of the norm— becomes easier.

A properly baselined and configured security monitoring system sends out actionable alerts that can be trusted and often automatically prioritized before getting to the Tier 1 analyst.

one of the top challenges in utilizing log data cited by respondents is the inability to discern normal from suspicious activity.

A best practice is to use platforms that can build baselines by monitoring network and endpoint activity for a period of time to help determine was “normal” looks like and then provide the capability to set event thresholds as key alert drivers.

When an unexpected behavior or deviation of normal activity is detected, the platform creates an alert, indicating further investigation is warranted.

Threat Intelligence

Mature SOCs continually develop the capability to consume and leverage threat intelligence from their past incidents and from information-sharing sources, such as a specialized threat intelligence vendor, industry partners, the cybercrimes division of law enforcement, information-sharing organizations (such as ISACs), or their security monitoring technology vendors.

According to the 2015 SANS Cyberthreat Intelligence (CTI) Survey, 69% of respondents reported that their organization implemented some cyberthreat intelligence capability, with 27% indicating that their teams fully embrace the concept of CTI and integrated response procedures across systems and staff.

A security monitoring system’s capability to operationalize threat intelligence and use it to help spot patterns in endpoint, log and network data, as well as associate anomalies with past alerts, incidents or attacks, can enhance an organization’s capability to detect a compromised system or user prior to it exhibiting the characteristics of a breach.

In fact, 55% of the respondents of the CTI Survey are currently using a centralized security management system to aggregate, analyze and operationalize their CTI.

Efficient SOC Incident Handling To achieve efficient incident handling, the SOC must avoid bottlenecks in the IR process that moves incidents through Tier 1, into Tier 2, and finally through Tier 3.

Bottlenecks can occur due to too much “white noise,” alerts of little consequence or false-positives that lead to analyst “alert fatigue.”

This phenomenon is a common experience among responders, Incident Response Survey results, where 15% reported responding to more than 20 false-positive alarms originally classified as incidents. When choosing an enterprise security monitoring tool, look for such features as alert threshold customization and the ability to combine many alerts into a single incident.

Also when incidents include additional context, analysts can triage them more quickly, reducing the layers of evaluation that must take place before an issue can be confirmed and quickly mitigated.

Types of SOC

Categorize SOCs that are internal to the constituency into five organizational models of how the team is comprised,

1. Security team.

No standing incident detection or response capability exists. In the event of a computer security incident, resources are gathered (usually from within the constituency) to deal with the problem, reconstitute systems, and then 16 stand down.

Results can vary widely as there is no central watch or consistent pool of expertise, and processes for incident handling are usually poorly defined. Constituencies composed of fewer than 1,000 users or IPs usually fall into this category.

2. Internal distributed SOC.

A standing SOC exists but is primarily composed of individuals whose organizational position is outside the SOC and whose primary job is IT or security related but not necessarily CND related.

One person or a small group is responsible for coordinating security operations, but the heavy lifting is carried out by individuals who are matrixed in from other organizations. SOCs supporting a small- to medium-sized constituency, perhaps 500 to 5,000 users or IPs, often fall into this category.

3. Internal centralized SOC.

A dedicated team of IT and cybersecurity professionals comprise a standing CND capability, providing ongoing services.

The resources and the authorities necessary to sustain the day-to-day network defense mission exist in a formally recognized entity, usually with its own budget. This team reports to a SOC manager who is responsible for overseeing the CND program for the constituency. Most SOCs fall into this category, typically serving constituencies ranging from 5,000 to 100,000 users or IP addresses.

4. Internal combined distributed and centralized SOC.

The SOC is composed of both a central team (as with internal centralized SOCs) and resources from elsewhere in the constituency (as with internal distributed SOCs). Individuals supporting CND operations outside of the main SOC are not recognized as a separate and distinct SOC entity.

For larger constituencies, this model strikes a balance between having a coherent, synchronized team and maintaining an understanding of edge IT assets and enclaves. SOCs with constituencies in the 25,000–500,000 user/IP range may pursue this approach, especially if their constituency is geographically distributed or they serve a highly heterogeneous computing environment.

5. Coordinating SOC.

The SOC mediates and facilitates CND activities between multiple subordinate distinct SOCs, typically for a large constituency, perhaps measured in the millions of users or IP addresses.

A coordinating SOC usually provides consulting services to a constituency that can be quite diverse.

It typically does not have active or comprehensive visibility down to the end host and most often has limited authority over its constituency.

Coordinating SOCs often serve as distribution hubs for cyber intel, best practices, and training. They also can offer analysis and forensics services, when requested by subordinate SOCs.

Capabilities

A SOC satisfies the constituency’s network monitoring and defense needs by offering a set of services.

SOCs have matured and adapted to increased demands, a changing threat environment, and tools that have dramatically enhanced the state of the art in CND operations. We also wish to articulate the full scope of what a SOC may do, regardless of whether a particular function serves the constituency, the SOC proper, or both. As a result, SOC services into a comprehensive list of SOC capabilities.

the SOC’s management chain is responsible for picking and choosing what capabilities best fits its constituency’s needs, given political and resource constraints.

  1. Real-Time Analysis
  2. Intel and Trending
  3. Incident Analysis and Response
  4. Artifact Analysis
  5. SOC Tool Life-Cycle Support
  6. Audit and Insider Threat
  7. Scanning and Assessment
  8. Outreach

Real-Time Analysis

Call Center

Tips, incident reports, and requests for CND services from constituents received via phone, email, SOC website postings, or other methods. This is roughly analogous to a traditional IT help desk, except that it is CND specific.

Real-Time Monitoring and Triage

Triage and short-turn analysis of real-time data feeds (such as system logs and alerts) for potential intrusions.

After a specified time threshold, suspected incidents are escalated to an incident analysis and response team for further study. Usually synonymous with a SOC’s Tier 1 analysts, focusing on real-time feeds of events and other data visualizations.

Note: This is one of the most easily recognizable and visible capabilities offered by a SOC, but it is meaningless without a corresponding incident analysis and response capability, discussed below.

Intel and Trending

Cyber Intel Collection and Analysis

Collection, consumption, and analysis of cyber intelligence reports, cyber intrusion reports, and news related to information security, covering new threats, vulnerabilities, products, and research. Materials are inspected for information requiring a response from the SOC or distribution to the constituency. Intel can be culled from coordinating SOCs, vendors, news media websites, online forums, and email distribution lists.

Cyber Intel Distribution

Synthesis, summarization, and redistribution of cyber intelligence reports, cyber intrusion reports, and news related to information security to members of the constituency on either a routine basis (such as a weekly or monthly cyber newsletter) or a non-routine basis (such as an emergency patch notice or phishing campaign alert).

Cyber

Intel Creation Primary authorship of new cyber intelligence reporting, such as threat notices or highlights, based on primary research performed by the SOC. For example, analysis of a new threat or vulnerability not previously seen elsewhere. This is usually driven by the SOC’s own incidents, forensic analysis, malware analysis, and adversary engagements.

Cyber Intel Fusion

Extracting data from cyber intel and synthesizing it into new signatures, content, and understanding of adversary TTPs, thereby evolving monitoring operations (e.g., new signatures or SIEM content).

Trending

Long-term analysis of event feeds, collected malware, and incident data for evidence of malicious or anomalous activity or to better understand the constituency or adversary TTPs. This may include unstructured, open-ended, deep-dive analysis on various data feeds, trending and correlation over weeks or months of log data, “low and slow” data analysis, and esoteric anomaly detection methods.

Threat Assessment

Holistic estimation of threats posed by various actors against the constituency, its enclaves, or lines of business, within the cyber realm. This will include leveraging existing resources such as cyber intel feeds and trending, along with the enterprise’s architecture and vulnerability status. Often performed in coordination with other cybersecurity stakeholders.

Incident Analysis and Response

Incident Analysis

Prolonged, in-depth analysis of potential intrusions and of tips forwarded from other SOC members. This capability is usually performed by analysts in tiers 2 and above within the SOC’s incident escalation process. It must be completed in a specific time span so as to support a relevant and effective response. This capability will usually involve analysis leveraging various data artifacts to determine the who, what, when, where, and why of an intrusion—its extent, how to limit damage, and how to recover. An analyst will document the details of this analysis, usually with a recommendation for further action.

Tradecraft Analysis

Carefully coordinated adversary engagements, whereby SOC members perform a sustained “down-in-the-weeds” study and analysis of adversary TTPs, in an effort to better understand them and inform ongoing monitoring. This activity is distinct from other capabilities because (1) it sometimes involves ad hoc instrumentation of networks and systems to focus on an activity of interest, such as a honeypot, and (2) an adversary will be allowed to continue its activity without immediately being cut off completely. This capability is closely supported by trending and malware and implant analysis and, in turn, can support cyber intel creation.

Incident Response Coordination

Work with affected constituents to gather further information about an incident, understand its significance, and assess mission impact. More important, this function includes coordinating response actions and incident reporting. This service does not involve the SOC directly implementing countermeasures.

Countermeasure Implementation

Actual implementation of response actions to an incident to deter, block, or cut off adversary presence or damage. Possible countermeasures include logical or physical isolation of involved systems, firewall blocks, DNS black holes, IP blocks, patch deployment, and account deactivation.

On-site Incident Response

Work with constituents to respond and recover from an incident on-site. This will usually require SOC members who are already located at, or who travel to, the constituent location to apply hands-on expertise in analyzing damage, eradicating changes left by an adversary, and recovering systems to a known good state. This work is done in partnership with system owners and sysadmins.

Remote Incident Response

Work with constituents to recover from an incident remotely. This involves the same work as on-site incident response. However, SOC members have comparatively less hands-on involvement in gathering artifacts or recovering systems. Remote support will usually be done via phone and email or, in rarer cases, remote terminal or administrative interfaces such as Microsoft Terminal Services or Secure Shell (SSH).

Artifact Analysis

Forensic Artifact Handling

Gathering and storing forensic artifacts (such as hard drives or removable media) related to an incident in a manner that supports its use in legal proceedings. Depending on jurisdiction, this may involve handling media while documenting chain of custody, ensuring secure storage, and supporting verifiable bit-by-bit copies of evidence.

Malware and Implant Analysis

Also known as malware reverse engineering or simply “reversing.” Extracting malware (viruses, Trojans, implants, droppers, etc.) from network traffic or media images and analyzing them to determine their nature. SOC members will typically look for initial infection vector, behavior, and, potentially, informal attribution to determine the extent of an intrusion and to support timely response. This may include either static code analysis through decompilation or runtime/execution analysis (e.g., “detonation”) or both. This capability is primarily meant to support effective monitoring and response. Although it leverages some of the same techniques as traditional “forensics,” it is not necessarily executed to support legal prosecution.

Forensic Artifact Analysis

Analysis of digital artifacts (media, network traffic, mobile devices) to determine the full extent and ground truth of an incident, usually by establishing a detailed timeline of events. This leverages techniques similar to some aspects of malware and implant analysis but follows a more exhaustive, documented process. This is often performed using processes and procedures such that its findings can support legal action against those who may be implicated in an incident.

SOC Tool Life-Cycle Support

Border Protection Device O&M

Operation and maintenance (O&M) of border protection devices (e.g., firewalls, Web proxies, email proxies, and content filters). Includes updates and CM of device policies, sometimes in response to a threat or incident. This activity is closely coordinated with a NOC.

SOC Infrastructure O&M

O&M of SOC technologies outside the scope of sensor tuning. This includes care and feeding of SOC IT equipment: servers, workstations, printers, relational databases, trouble-ticketing systems, storage area networks (SANs), and tape backup. If the SOC has its own enclave, this will likely include maintenance of its routers, switches, firewalls, and domain controllers, if any. This also may include O&M of monitoring systems, operating systems (OSes), and hardware. Personnel who support this service have “root” privileges on SOC equipment.

Sensor Tuning and Maintenance

Care and feeding of sensor platforms owned and operated by the SOC: IDS, IPS, SIEM, and so forth. This includes updating IDS/IPS and SIEM systems with new signatures, tuning their signature sets to keep event volume at acceptable levels, minimizing false positives, and maintaining up/down health status of sensors and data feeds. SOC members involved in this service must have a keen awareness of the monitoring needs of the SOC so that the SOC may keep pace with a constantly evolving consistency and threat environment. Changes to any in-line prevention devices (HIPS/NIPS) are usually coordinated with the NOC or other areas of IT operations. This capability may involve a significant ad hoc scripting to move data around and to integrate tools and data feeds.

Custom Signature Creation

Authoring and implementing original detection content for monitoring systems (IDS signatures, SIEM use cases, etc.) on the basis of current threats, vulnerabilities, protocols, missions, or other specifics to the constituency environment. This capability leverages tools at the SOC’s disposal to fill gaps left by commercially or communityprovided signatures. The SOC may share its custom signatures with other SOCs.

Tool Engineering and Deployment

Market research, product evaluation, prototyping, engineering, integration, deployment, and upgrades of SOC equipment, principally based on free or open source software (FOSS) or commercial off-the-shelf (COTS) technologies. This service includes budgeting, acquisition, and regular recapitalization of SOC systems. Personnel supporting this service must maintain a keen eye on a changing threat environment, bringing new capabilities to bear in a matter of weeks or months, in accordance with the demands of the mission.

Tool Research and Development

Research and development (R&D) of custom tools where no suitable commercial or open source capability fits an operational need. This activity’s scope spans from code development for a known, structured problem to multiyear academic research applied to a more complex challenge.

Audit and Insider Threat

Audit Data Collection and Distribution

Collection of a number of security-relevant data feeds for correlation and incident analysis purposes. This collection architecture may also be leveraged to support distribution and later retrieval of audit data for on-demand investigative or analysis purposes outside the scope of the SOC mission. This capability encompasses long-term retention of security-relevant data for use by constituents outside the SOC.

Audit Content Creation and Management

Creation and tailoring of SIEM or log maintenance (LM) content (correlation, dashboards, reports, etc.) for purposes of serving constituents’ audit review and misuse detection. This service builds off the audit data distribution capability, providing not only a raw data feed but also content built for constituents outside the SOC.

Insider Threat Case Support

Support to insider threat analysis and investigation in two related but distinct areas: 1. Finding tip-offs for potential insider threat cases (e.g., misuse of IT resources, time card fraud, financial fraud, industrial espionage, or theft).

The SOC will tip off appropriate investigative bodies (law enforcement, Inspector General [IG], etc.) with a case of interest. 2. On behalf of these investigative bodies, the SOC will provide further monitoring, information collection, and analysis in support of an insider threat case.

Insider Threat Case Investigation

The SOC leveraging its own independent regulatory or legal authority to investigate insider threat, to include focused or prolonged monitoring of specific individuals, without needing support or authorities from an external entity. In practice, few SOCs outside the law enforcement community have such authorities, so they usually act under another organization’s direction

Scanning and Assessment

Network Mapping

Sustained, regular mapping of constituency networks to understand the size, shape, makeup, and perimeter interfaces of the constituency, through automated or manual techniques. These maps often are built in cooperation with—and distributed to—other constituents.

Vulnerability Scanning

Interrogation of consistency hosts for vulnerability status, usually focusing on each system’s patch level and security compliance, typically through automated, distributed tools. As with network mapping, this allows the SOC to better understand what it must defend. The SOC can provide this data back to members of the constituency—perhaps in report or summary form. This function is performed regularly and is not part of a specific assessment or exercise

Vulnerability Assessment

Full-knowledge, open-security assessment of a constituency site, enclave, or system, sometimes known as “Blue Teaming.” SOC members work with system owners and sysadmins to holistically examine the security architecture and vulnerabilities of their systems, through scans, examining system configuration, reviewing system design documentation, and interviews.

This activity may leverage network and vulnerability scanning tools, plus more invasive technologies used to interrogate systems for configuration and status. From this examination, team members produce a report of their findings, along with recommended remediation. SOCs leverage vulnerability assessments as an opportunity to expand monitoring coverage and their analysts’ knowledge of the constituency

Penetration Testing

No-knowledge or limited-knowledge assessment of a specific area of the constituency, also known as “Red Teaming.” Members of the SOC conduct a simulated attack against a segment of the constituency to assess the target’s resiliency to an actual attack.

These operations usually are conducted only with the knowledge and authorization of the highest level executives within the consistency and without forewarning system owners. Tools used will actually execute attacks through various means: buffer overflows, Structured Query Language (SQL) injection, and input fuzzing. Red Teams usually will limit their objectives and resources to model that of a specific actor, perhaps simulating an adversary’s campaign that might begin with a phishing attack.

When the operation is over, the team will produce a report with its findings, in the same manner as a vulnerability assessment. However, because penetration testing activities have a narrow set of goals, they do not cover as many aspects of system configuration and best practices as a vulnerability assessment would.

In some cases, SOC personnel will only coordinate Red-Teaming activities, with a designated third party performing most of the actual testing to ensure that testers have no previous knowledge of constituency systems or vulnerabilities.

Outreach

Product Assessment

Testing the security features of point products being acquired by constituency members. Analogous to miniature vulnerability assessments of one or a few hosts, this testing allows in-depth analysis of a particular product’s strengths and weaknesses from a security perspective. This may involve “in-house” testing of products rather than remote assessment of production or preproduction systems.

Security Consulting

Providing cybersecurity advice to constituents outside the scope of CND; supporting new system design, business continuity, and disaster recovery planning; cybersecurity policy; secure configuration guides; and other efforts.

Training and Awareness Building

Proactive outreach to constituents supporting general user training, bulletins, and other educational materials that help them understand various cybersecurity issues. The main goals are to help constituents protect themselves from common threats such as phishing/pharming schemes, better secure end systems, raise awareness of the SOC’s services, and help constituents correctly report incidents

Situational Awareness

Regular, repeatable repackaging and redistribution of the SOC’s knowledge of constituency assets, networks, threats, incidents, and vulnerabilities to constituents. This capability goes beyond cyber intel distribution, enhancing constituents’ understanding of the cybersecurity posture of the constituency and portions thereof, driving effective decision making at all levels. This information can be delivered automatically through a SOC website, Web portal, or email distribution list.

Redistribution of TTPs

Sustained sharing of SOC internal products to other consumers such as partner or subordinate SOCs, in a more formal, polished, or structured format. This can include almost anything the SOC develops on its own (e.g., tools, cyber intel, signatures, incident reports, and other raw observables). The principle of quid pro quo often applies: information flow between SOCs is bidirectional.

Media Relations

Direct communication with the news media. The SOC is responsible for disclosing information without impacting the reputation of the constituency or ongoing response activities.

Summary

As you tackle the challenge of building a security operations center (SOC), your ability to anticipate common obstacles will facilitate smooth startup, build-out and maturation over time. Though each organization is unique in its current security posture, risk tolerance, expertise and budget, all share the goals of attempting to minimize and harden their attack surface and swiftly detecting, prioritizing and investigating security incidents when they occur.

 

References

https://www.sans.org/reading-room/whitepapers/analyst/building-world-class-security-operations-center-roadmap-35907

https://www.mitre.org/sites/default/files/publications/pr-13-1028-mitre-10-strategies-cyber-ops-center.pdf

http://www.mcafee.com/in/resources/white-papers/foundstone/wp-creating-maintaining-soc.pdf

 

By:BALAJI N

https://gbhackers.com/how-to-build-and-run-a-security-operations-center/

 

 

 

 

Troubleshoot Openstack Networking with Python


Basim Aly

As an Openstack Administrator for a while, I found the most complicated topic to be understood in openstack project is Networking and how instances ( formerly virtual machines) are communicated with each other and with external world.

Unlike VMWare ESXI, where you can just create vSwitch and attach a VM to it, Openstack Networking is much more complex that that. You need first to define Network type itself(Flat, VLAN, VxLAN, GRE), attach it to the subnet with IPv4 or IPv6 Block, Create a Floating IP address if this network will be connected externally to a provider network and optionally create an internal router to route between different networks and subnets. lots of steps!

image

Floating ip and neutron router in nutshellimage

Also Neutron itself doesn’t provide an actual networking to the instances. it just a wrapper to a drivers called “Mechanism Drivers” on which they provide the actual networking(switching, routing and…

View original post 781 more words